Saturday, 17 November 2012

Cerebral Palsy


Cerebral palsy (CP) is a group of non-progressive, non-contagious motor conditions that cause physical disability in human development, chiefly in the various areas of body movement.
Cerebral refers to the cerebrum, which is the affected area of the brain (although the disorder probably involves connections between the cortex and other parts of the brain such as the cerebellum), and palsy refers to disorder of movement. Furthermore, paralytic disorders are not cerebral palsy – the condition of quadriplegia, therefore, should not be confused with spastic quadriplegia, nor tardive dyskinesia with dyskinetic cerebral palsy, nor diplegia with spastic diplegia, and so on.
Cerebral palsy is caused by damage to the motor control centers of the developing brain and can occur during pregnancy, during childbirth or after birth up to about age three. Resulting limits in movement and posture cause activity limitation and are often accompanied by disturbances of sensation, depth perception, and other sight-based perceptual problems, communication ability; impairments can also be found in cognition, and epilepsy is found in about one-third of cases. CP, no matter what the type, is often accompanied by secondary musculoskeletal problems that arise as a result of the underlying disorder.Of the many types and subtypes of CP, none has a known cure. Usually, medical intervention is limited to the treatment and prevention of complications arising from CP's effects.
Classification
Cerebral palsy (CP) is divided into four major classifications to describe different movement impairments. These classifications also reflect the areas of the brain that are damaged. Spastic cerebral palsy is by far the most common type of overall cerebral palsy, occurring in 80% of all cases. As compared to other types of CP, and especially as compared to hypotonic or paralytic mobility disabilities, spastic CP is typically more easily manageable by the person affected, and medical treatment can be pursued on a multitude of orthopedic and neurological fronts throughout life
 Motor skills such as writing, typing, or using scissors might be affected, as well as balance, especially while walking. It is common for individuals to have difficulty with visual and/or auditory processing.
Signs and symptoms
All types of cerebral palsy are characterized by abnormal muscle tone (e.g. slouching over while sitting), reflexes, or motor development and coordination. There can be joint and bone deformities and contractures(permanently fixed, tight muscles and joints). The classical symptoms are spasticities, spasms, other involuntary movements (e.g. facial gestures), unsteady gait, problems with balance, and/or soft tissue findings consisting largely of decreased muscle mass. Scissor walking (where the knees come in and cross) and toe walking (which can contribute to a gait reminiscent of a marionette) are common among people with CP who are able to walk, but taken on the whole, CP symptomatology is very diverse. The effects of cerebral palsy fall on a continuum of motor dysfunction which may range from slight clumsiness at the mild end of the spectrum to impairments so severe that they render coordinated movement virtually impossible at the other end the spectrum.
Babies born with severe CP often have an irregular posture; their bodies may be either very floppy or very stiff. Birth defects, such as spinal curvature, a small jawbone, or a small head sometimes occur along with CP. Symptoms may appear or change as a child gets older. Some babies born with CP do not show obvious signs right away. Classically, CP becomes evident when the baby reaches the developmental stage at six and a half to 9 months and is starting to mobilise, where preferential use of limbs, asymmetry or gross motor developmental delay is seen.
Speech and language disorders are common in people with cerebral palsy. The incidence of dysarthria is estimated to range from 31% to 88%. Speech problems are associated with poor respiratory control, laryngeal and velopharyngeal dysfunction as well as oral articulation disorders that are due to restricted movement in the oral-facial muscles. There are three major types of dysarthria in cerebral palsy: spastic, dyskinetic (athetosis) and ataxic.
Skeleton
In order for bones to attain their normal shape and size, they require the stresses from normal musculature. Osseous findings will therefore mirror the specific muscular deficits in a given person with CP. The shafts of the bones are often thin (gracile) and become thinner during growth. When compared to these thin shafts (diaphyses), the centers (metaphyses) often appear quite enlarged (ballooning). With lack of use, articular cartilage may atrophy, leading to narrowed joint spaces. Depending on the degree of spasticity, a person with CP may exhibit a variety of angular joint deformities. Because vertebral bodies need vertical gravitational loading forces to develop properly, spasticity and an abnormal gait can hinder proper and/or full bone and skeletal development. People with CP tend to be shorter in height than the average person because their bones are not allowed to grow to their full potential. Sometimes bones grow to different lengths, so the person may have one leg longer than the other.
Pain and sleep disorders
Pain is common, and may result from the inherent deficits associated with the condition, along with the numerous procedures affected children typically face. There is also a high likelihood of suffering from chronic sleep disorders associated with both physical and environmental factors. Pain is also associated with tight and/or shortened muscle, abnormal posture, stiff joints, unsuitable orthosis etc.
Causes
While in certain cases there is no identifiable cause, typical causes include problems in intrauterine development (e.g. exposure to radiation, infection), asphyxia before birth, hypoxia of the brain, and birth trauma during labor and delivery, and complications in the perinatal period or during childhood. CP is also more common in multiple births.
Between 40 and 50% of all children who develop cerebral palsy were born prematurely. Premature infants are vulnerable, in part because their organs are not fully developed, increasing the risk of hypoxic injury to the brain that may manifest as CP. A problem in interpreting this is the difficulty in differentiating between cerebral palsy caused by damage to the brain that results from inadequate oxygenation and CP that arises from prenatal brain damage that then precipitates premature delivery.
Recent research has demonstrated that intrapartum asphyxia is not the most important cause, probably accounting for no more than 10 percent of all cases; rather, infections in the mother, even infections that are not easily detected, may triple the risk of the child developing the disorder, mainly as the result of the toxicity to the fetal brain of cytokines that are produced as part of the inflammatory response. Low birthweight is a risk factor for CP—and premature infants usually have low birth weights, less than 2.0 kg, but full-term infants can also have low birth weights. Multiple-birth infants are also more likely than single-birth infants to be born early or with a low birth weight.
After birth, other causes include toxins, severe jaundice, lead poisoning, physical brain injury, shaken baby syndrome, incidents involving hypoxia to the brain (such as near drowning), and encephalitis or meningitis. The three most common causes of asphyxia in the young child are: choking on foreign objects such as toys and pieces of food, poisoning, and near drowning.
Some structural brain anomalies such as lissencephaly may present with the clinical features of CP, although whether that could be considered CP is a matter of opinion (some people say CP must be due to brain damage, whereas people with these anomalies didn't have a normal brain). Often this goes along with rare chromosome disorders and CP is not genetic or hereditary.
It has been hypothetized that many cases of cerebral palsy are caused by the death in very early pregnancy of an identical twin.
Diagnosis
The diagnosis of cerebral palsy has historically rested on the patient's history and physical examination. The diagnosis of cerebral palsy can sometimes be made shortly after birth, but is often postponed until the child is 18-24 months of age, in order to evaluate the functional status and the progression (and/or regression) of the symptoms.
Treatment
Treatment for cerebral palsy is a lifelong multi-dimensional process focused on the maintenance of associated conditions. In order to be diagnosed with cerebral palsy the damage that occurred to the brain must be non-progressive and not disease-like in nature. The manifestation of that damage will change as the brain and body develop, but the actual damage to the brain will not increase. Treatment in the life of cerebral palsy is the constant focus on preventing the damage in the brain from prohibiting healthy development on all levels. The brain, up to about the age of 8, is not concrete in its development. It has the ability to reorganize and reroute many signal paths that may have been affected by the initial trauma; the earlier it has help in doing this the more successful it will be.
Various forms of therapy are available to people living with cerebral palsy as well as caregivers and parents caring for someone with this disability. They can all be useful at all stages of this disability and are vital in a person with cerebral palsy's ability to function and live more effectively. In general, the earlier treatment begins the better chance children have of overcoming developmental disabilities or learning new ways to accomplish the tasks that challenge them. The earliest proven intervention occurs during the infant's recovery in the neonatal intensive care unit(NICU). Treatment may include one or more of the following: physical therapy; occupational therapy; speech therapy; drugs to control seizures, alleviate pain, or relax muscle spasms (e.g. benzodiazepines, baclofen and intrathecal phenol/baclofen); hyperbaric oxygen; the use of Botox to relax contracting muscles; surgery to correct anatomical abnormalities or release tight muscles; braces and other orthotic devices; rolling walkers; and communication aids such as computers with attached voice synthesizers. For instance, the use of a standing frame can help reduce spasticity and improve range of motion for people with CP who use wheelchairs.
Interpersonal therapy
Physiotherapy programs are designed to encourage the patient to build a strength base for improved gait and volitional movement, together with stretching programs to limit contractures. Many experts believe that lifelong physiotherapy is crucial to maintain muscle tone, bone structure, and prevent dislocation of the joints.
Occupational therapy helps adults and children maximise their function, adapt to their limitations and live as independently as possible.
Speech therapy helps control the muscles of the mouth and jaw, and helps improve communication. Just as CP can affect the way a person moves their arms and legs, it can also affect the way they move their mouth, face and head. This can make it hard for the person to breathe; talk clearly; and bite, chew and swallow food. Speech therapy often starts before a child begins school and continues throughout the school years.
Massage therapy is designed to help relax tense muscles, strengthen muscles, and keep joints flexible. More research is needed to determine the health benefits of these therapies for people with CP.
 Occupational therapy
Occupational Therapy (OT) enables individuals with CP to participate in activities of daily living that are meaningful to them. A family-centred philosophy is used with children who have CP. Occupational therapists work closely with families in order to address their concerns and priorities for their child. Occupational therapists may address issues relating to sensory, cognitive, or motor impairments resulting from CP that affect the child's participation in self-care, productivity, or leisure. Parent counselling is also an important aspect of occupational therapy treatment with regard to optimizing the parent's skills in caring for and playing with their child to support improvement of their child's abilities to do things. The occupational therapist typically assesses the child to identify abilities and difficulties, and environmental conditions, such as physical and cultural influences, that affect participation in daily activities Occupational therapists may also recommend changes to the play space, changes to the structure of the room or building, and seating and positioning techniques to allow the child to play and learn effectively.
Surgery and orthoses
Surgery usually involves one or a combination of:
  • Loosening tight muscles and releasing fixed joints, most often performed on the hips, knees, hamstrings, and ankles. In rare cases, this surgery may be used for people with stiffness of their elbows, wrists, hands, and fingersThe insertion of a baclofen pump usually during the stages while a patient is a young adult. This is usually placed in the left abdomen. It is a pump that is connected to the spinal cord, whereby it sends bits of Baclofen alleviating the continuous muscle flexion. Baclofen is a muscle relaxant and is often given by mouth to patients to help counter the effects of spasticity.
  • Straightening abnormal twists of the leg bones, i.e. femur (termed femoral anteversion or antetorsion) and tibia (tibial torsion). This is a secondary complication caused by the spastic muscles generating abnormal forces on the bones, and often results in intoeing (pigeon-toed gait). The surgery is called derotation osteotomy, in which the bone is broken (cut) and then set in the correct alignment.[37]
  • Cutting nerves on the limbs most affected by movements and spasms. This procedure, called a rhizotomy("rhizo" meaning root and "tomy" meaning "a cutting of" from the Greek suffix 'tomia'), reduces spasms and allows more flexibility and control of the affected limbs and joints.
Other treatments
Cooling high-risk full-term babies shortly after birth may reduce disability or death.
Early nutritional support: In one cohort study of 490 premature infants discharged from the NICU, the rate of growth during hospital stay was related to neurological function at 18 and 22 months of age. The study found a significant decrease in the incidence of cerebral palsy in the group of premature infants with the highest growth rate. This study suggests that adequate nutrition and growth play a protective role in the development of cerebral palsy.
Hyperbaric oxygen therapy (HBOT), in which pressurized oxygen is inhaled inside a hyperbaric chamber, has been studied under the theory that improving oxygen availability to damaged brain cells can reactivate some of them to function normally. A 2007 systematic review concluded that treatment with HBOT showed no significant difference from that of pressurized room air, and that some children undergoing HBOT may experience adverse events such as seizures and the need for ear pressure equalization tubes; due to poor quality of data assessment the review also concluded that estimates of the prevalence of adverse events are uncertain.
Prognosis
CP is not a progressive disorder (meaning the brain damage does not worsen), but the symptoms can become more severe over time due to subdural damage. A person with the disorder may improve somewhat during childhood if he or she receives extensive care from specialists, but once bones and musculature become more established, orthopedic surgery may be required . The full intellectual potential of a child born with CP will often not be known until the child starts school. People with CP are more likely to have learning disabilities, although these may be unrelated to IQ, and are more likely to show varying degrees of intellectual disability. Intellectual level among people with CP varies from genius to intellectually impaired, as it does in the general population, and experts have stated that it is important to not underestimate a person with CP's capabilities and to give them every opportunity to learn.
The ability to live independently with CP varies widely, depending partly on the severity of each person's impairment, and partly on the capability of each person to self-manage the logistics of his or her own life. Some individuals with CP require personal assistant services for all activities of daily living. Others only need assistance with certain activities, and still others do not require any physical assistance at all. But regardless of the severity of a person's physical impairment, a person's ability to live independently often depends primarily on the person's capacity to manage the physical realities of his or her own life autonomously.
People with CP can usually expect to have a normal life expectancy; survival has been shown to be associated with the ability to ambulate, roll, and self-feed. As the condition does not affect reproductive function, people with CP can have children and parent successfully. According to, only 2% of cases of CP are inherited (with glutamate decarboxylase-1 as one known enzyme involved.) There is no evidence of an increased chance of a pehaving a child with CP.
Self-care
Self-care is any activity children do to care for themselves. For many children with CP, parents are heavily involved in self-care activities. Self-care activities, such as bathing, dressing, grooming and eating, can be difficult for children with CP as self-care depends primarily on use of the upper limbs. For those living with CP, impaired upper limb function affects almost 50% of children and is considered the main factor contributing to decreased activity and participation. Since the hands are used for many self-care tasks, it is logical that sensory and motor impairments would impact daily self-care. The extent of the hand impairment depends on the location and degree of brain damage. Sensory impairments can make getting dressed and brushing teeth difficult. Along with sensory impairments, motor impairments of the hand are thought to be responsible for difficulties experienced in daily, self-care activities. With upper limb spasticity, it may be difficult to get dressed in the morning. If the individual with CP also has cognitive deficits, this may add an additional challenge to dressing and grooming.
Children with CP sometimes have oral sensory disturbances meaning that they have too little or too much sensitivity around and in the mouth. An infant with CP may not be able to suck, swallow or chew and this can result in difficulty eating. As mentioned in the above paragraph, finger dexterity is the most prevalent motor impairment. Finger dexterity is essential for manipulating cutlery or bringing food to the mouth. Fine finger dexterity, like picking up a spoon, is more frequently impaired than gross manual dexterity, like spooning food onto a plate. Grip strength impairments are less common. Overall, children with CP may have difficulty chewing and swallowing food, holding utensils, and preparing food due to sensory and motor impairments.
Productivity
Play is considered the main occupation for children. If play becomes difficult due to a disability, like CP, this can cause problems for the child. These difficulties can affect a child’s self-esteem. In addition, the sensory and motor problems experienced by children with CP affect how the child interacts with their surroundings, including the environment and other people. Not only do physical limitations affect a child’s ability to play, the limitations perceived by the child’s caregivers and playmates also impact the child’s play activities. Some children with disabilities spend more time playing by themselves. When a disability prevents a child from playing, there may be social, emotional and psychological problems which can lead to increased dependence on others, less motivation and poor social skills.
In school, students are asked to complete many tasks and activities, many of which involve handwriting. Many children with CP have the capacity to learn and write in the school environment. However, students with CP may find it difficult to keep up with the handwriting demands of school and their writing may be difficult to read. In addition, writing may take longer and require greater effort on the student’s part. Factors linked to handwriting include: postural stability, sensory and perceptual abilities of the hand and writing tool pressure.
Also, speech impairments may be seen in children with CP depending on the severity of brain damage. Communication in a school setting is quite important because communicating with peers and teachers is very much a part of the “school experience” and enhances social interaction. Problems with language or motor dysfunction can lead to underestimating a student’s intelligence. In summary, children with CP may experience difficulties in school, such as difficulty with handwriting, carrying out school activities, communicating verbally and interacting socially.
Leisure
Leisure occupations are any activities that are done for enjoyment. Enjoyable activities depend on the child’s personality and environment. Leisure activities can have several positive effects on physical health, mental health, life satisfaction and psychological growth for children with physical disabilities like CP. Common benefits identified are stress reduction, development of coping skills, companionship, enjoyment, relaxation and a positive effect on life satisfaction. In addition, for children with CP, leisure appears to enhance adjustment to living with a disability.
Leisure can be divided into structured (formal) and unstructured (informal) activities. Studies show that children with disabilities, like CP, participate mainly in informal activities that are carried out in the family environment and are organized by adults. Typically, children with disabilities carry out leisure activities by themselves or with their parents rather than with friends. Therefore, children may experience limited diversity of activities and social engagements, as well as a more passive lifestyle than their peers. Although leisure is important for children with CP, they may have difficulties carrying out leisure activities due to social and physical barriers.
Epidemiology
In the industrialized world, the prevalence of cerebral palsy is about 2 per 1000 live births. The incidence is higher in males than in females; the Surveillance of Cerebral Palsy inEurope (SCPE) reports a M:F ratio of 1.33:1. Variances in reported rates of incidence or prevalence across different geographical areas in industrialised countries are thought to be caused primarily by discrepancies in the criteria used for inclusion and exclusion. When such discrepancies are taken into account in comparing two or more registers of patients with cerebral palsy (for example, the extent to which children with mild cerebral palsy are included), the prevalence rates converge toward the average rate of 2:1000.
Overall, advances in care of pregnant mothers and their babies has not resulted in a noticeable decrease in CP. This is generally attributed to medical advances in areas related to the care of premature babies (which results in a greater survival rate). Only the introduction of quality medical care to locations with less-than-adequate medical care has shown any decreases. The incidence of CP increases with premature or very low-weight babies regardless of the quality of care.

1 comment:

  1. how to do physiotherapy assesment and treatment for spastic quadriplegia ?

    ReplyDelete